Journal of Organometallic Chemistry, 326 (1987) 357-368 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SYNTHESE UND STRUKTURUNTERSUCHUNGEN VON ZWEI STANNYLWOLFRAMPENTACARBONYLEN $R_2Sn-W(CO)_5$ (R = (σ -DIMETHYLAMINOMETHYL)PHENYL BZW. (σ -DIPHENYLPHOSPHINOMETHYL)PHENYL)

H.-P. ABICHT, K. JURKSCHAT, A. TZSCHACH,

Sektion Chemie der Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 16, DDR-4050 Halle/S (D.D.R.)

K. PETERS*, E.-M. PETERS und H.G. VON SCHNERING Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-7000 Stuttgart 80 (B.R.D.) (Eingegangen den 15. Dezember 1986)

Summary

The compounds $[o-C_6H_4CH_2E]_2Sn-W(CO)_5$, $(E = NMe_2$ (1) or PPh₂ (2)) have been prepared by reaction of $o-LiC_6H_4CH_2E$ with pentacarbonyltungsten tin(II) chloride (CO)₅WSnCl₂. The complexes were characterized by ¹³C, ³¹P, and ¹¹⁹Sn NMR spectroscopy and by X-ray diffraction analyses. 1 crystallizes monoclinically in the space group C2/c (no. 15) with a 1310.2(4), b 1552.1(4), c 1202.9(4) pm, β 90.11(4)°, and Z = 4. 2 crystallizes monoclinically in the space group P2₁/n (no. 14) with a 2108.1(4), b 1707.7(4), c 1283.7(3) pm, β 97.47(2)° and Z = 4. The structures were refined to final R values of 0.029 and 0.039, respectively.

The Sn-W bond distances of 274.9 and 276.2 pm are very similar in both complexes. The Sn atoms are penta-coordinated by 2C, 2N and W in 1 and by 2C, 2P and W in 2. The penta-coordination comprises one Sn-W and two Sn-C single bonds, and either a Sn-N (in 1) or a Sn-P bond (in 2) of bond order 0.45. In the stannyl group of 1 the Sn-N bond distances both are identical by symmetry (256.4 pm), whereas the two Sn-P bond lengths of 2 differ to some extent (283.1 and 301.2 pm).

Zusammenfassung

Die Verbindungen $[o-C_6H_4CH_2E]_2Sn-W(CO)_5$ (E = NMe₂ (1) oder PPh₂ (2)) wurden durch Reaktion von o-LiC₆H₄CH₂E mit Wolframpentacarbonyl-Zinn(II) chlorid (CO)₅WSnCl₂ dargestellt. Die Komplexe werden durch ¹³C, ³¹P und ¹¹⁹Sn-NMR-Spektroskopie sowie durch Röntgenstrukturanalysen charakterisiert. 1 kristallisiert monoklin in der Raumgruppe C2/c (Nr. 15) mit a 1310.2(4), b 1552.1(5), c 1202.9(4) pm, β 90.11(4)° und Z = 4. 2 kristallisiert monoklin in der Raumgruppe

0022-328X/87/\$03.50 © 1987 Elsevier Sequoia S.A.

Verbin-	E/E'	Chemische V	erschiebungen	g (ppm)							1
dung		1/1	2/2'	3/3'	4/4'	5/5'	6/6'	,1/1	8	6	
1	NMe ₂	153.10	144.37	127.03 ª	128.21	137.41	126.63	67.74	200.43	202.25	ł
2	PPh_2	149.33	142.80	129.30	131.81	138.02	126.32	36.11	200.73	203.32	
Verbin-	E/E'	Kopplungske	onstanten J (H	(Z							I
gung		1-Sn	3-Sn	5-Sn	6-Sn	8-Sn	9-Sn	8-W	M-6		1
-	NMe ₂	182	22	2	42	53	p	122	p		ł
7	PPh ₂	179	9	63	45	4 6	39	122	165		
Verbin-	E/E'	1-P	1-P'	2-P	2-P'						I
gunp					·						
2	PPh ₂	25	25	4	4						I
											L

	^b Nicht beobachtet.
	130.36 ppm.
	ပြိ
	, 128.87
	Ů
	133.09
	ပ်
	nt beobachtet
	nic
	U.
) von 2
	δ(PPh ₂)
ł	(breit);
	mdd
•	: 46.88
	on 1
	2) v
	8 (NMe

¹³C-NMR-DATEN VON 1 (CDCl₃) UND 2 (CD₂Cl₂) BEI T 30°C

TABELLE 1

 $P2_1/n$ (Nr. 14) mit a 2108.1(4), b 1707.7(4), c 1283.7(3) pm, β 97.47(2)° und Z = 4. Die Strukturen wurden auf R-Werte von 0.029 bzw. 0.039 verfeinert.

Die Bindungsabstände Sn-W 274.9 bzw. 276.2 pm sind in beiden Komplexen sehr ähnlich. Die Sn-Atome sind fünffach koordiniert durch 2C, 2N und W in 1 bzw. 2C, 2P und W in 2. Die fünffache Koordination setzt sich zusammen aus der Sn-W und zwei Sn-C-Einfachbindungen sowie aus Sn-N bzw. Sn-P-Bindungen mit der Bindungsordnung 0.45 in 1 bzw. 2. In der Stannylgruppe von 1 sind beide Sn-N-Abstände aus Symmetriegründen identisch (256.4 pm), während die beiden Bindungen Sn-P in 2 merklich voneinander abweichen 283.1 bzw. 301.2 pm.

Einleitung

Es ist seit längerem bekannt, dass sich Stannylene R_2 Sn durch sterisch anspruchsvolle Organogruppen stabilisieren lassen [1,2]. Auch die entsprechenden Metallpentacarbonylkomplexe des Typs R_2 Sn-M(CO)₅ sind monomer. Wird die Raumerfüllung der Liganden R herabgesetzt, so lassen sich offensichtlich monomere Komplexe nur durch die Einführung von mindestens einem intramolekularen Donoratom stabilisieren [3,4,5]. Im Rahmen unserer Arbeiten über intramolekularbasenstabilisierte Stannylene des Typs Sn(XCH₂CH₂)₂E (X = O, S, NMe; E = NR, PR, O, S) konnten wir zeigen, dass der Grad der Autassoziation von der Natur der Heteroatome X und E abhängt [6-8].

Kürzlich berichteten wir über Versuche, durch Umsetzung von o-metalliertem Benzyldiphenylphosphin mit Zinn(II)chlorid zum intramolekular-basenstabilisierten Stannylen des Typs $[o-C_6H_4CH_2PPh_2)_2Sn]$ zu gelangen [9]. Im Rahmen dieser Arbeit war auch die Darstellung des entsprechenden Wolframpentacarbonylkomplexes $[(o-C_6H_4CH_2PPh_2)_2Sn-W(CO)_5]$ von Interesse [9]. In der vorliegenden Arbeit berichten wir über ausführliche Strukturuntersuchungen an diesem Komplex und dem stickstoffsubstituierten Analogon $[(o-C_6H_4CH_2NMe_2)_2Sn-W(CO)_5]$.

Darstellung und Eigenschaften

Die Verbindungen 1 und 2 werden gemäss Gl. 1 durch die Umsetzung von Wolframpentacarbonylzinn(II)chlorid mit zwei Äquivalenten der entsprechenden Lithiumbenzyldiorganoelement-Spezies als farblose Kristalle erhalten. Die Verbindungen sind in kristalliner Form an der Luft stabil, 2 färbt sich unter Lichteinwirkung allmählich gelb. In der Lösung liegen Monomere vor.

2
$$O_{Li}^{E}$$
 + Cl₂SnW(CO)₅ $\xrightarrow{thf_1-70°C}$ O_{LiCl}^{E} \xrightarrow{t}_{3} Sn-W(CO)₅

Kernresonanz-Untersuchungen

Die ¹³C-NMR-Daten von 1 und 2 sind in Tab. 1 zusammengestellt. Unsubstituierte Diphenylzinnkomplexe sind in der Literatur ausführlich beschrieben und ¹³C-NMR-spektroskopisch charakterisiert worden [9–13]. Aufgrund der Symmetrie beobachtet man für die Kohlenstoffatome vier ¹³C-Resonanzen in der Reihenfolge

SCHEMA 1

 $\delta(C_i) > \delta(C_o) > \delta(C_o) > \delta(C_m)$. Die ¹¹⁹Sn-Kopplungen zu den meta-C-Atomen sind in der Regel grösser als zu den o-Kohlenstoffatomen. In 1 und 2 ist durch die ortho-Substitution die Symmetrie aufgehoben, so dass sechs ¹³C-Resonanzen zu erwarten sind. Die Zuordnung der Signale erfolgte unter Beachtung der ¹¹⁹Sn-¹³Cund ³¹P-¹³C-Kopplungen und durch Vergleich mit analogen Platin- und Palladiumkomplexen [14]. Die an die Zinnatome gebundenen ipso-Kohlenstoffatome C(1) zeigen erwartungsgemäss die grösste Tieffeldverschiebung, gefolgt von den C(2)-Kohlenstoffatomen. Die Differenz der chemischen Verschiebungen der C(1)-Atome in 1 und 2 spiegelt den in den Molekülstrukturen gefundenen Unterschied der Winkel C-Sn-C wider. Bemerkenswert ist die Hochfeldverschiebung von C(6)und die Tieffeldverschiebung von C(5). Bei der Zuordnung dieser Signale wurde der aus der Literatur bekannten Sequenz für die Kopplungskonstanten $({}^{3}J({}^{119}Sn-{}^{13}C)$ $> {}^{2}J({}^{119}Sn-{}^{13}C))$ der Vorrang gegenüber der Verschiebungsreihenfolge ($\delta(C_{o}) >$ $\delta(C_m)$ gegeben [9-13]. Bemerkenswert ist ferner das Fehlen einer ¹¹⁹Sn-¹³C(2)-Kopplung. Eine Wertung dieser Phänomene ist jedoch erst durch systematische Untersuchungen einer Reihe ähnlicher Verbindungen möglich.

In 2 erscheinen die Signale für die Kohlenstoffatome C(1)/C(1') und C(2)/C(2') jeweils als Pseudotriplett (AXX'-System mit X/X' = P/P'), wobei die Kopplungen zu beiden Phosphorkernen jeweils gleich sind. Auffallend sind die sehr kleinen und nahezu gleichen ${}^{1}J({}^{119}\text{Sn}{}^{-13}\text{C})$ -Kopplungskonstanten in 1 und 2. Aufgrund dieser Werte hatten wir für das Zinnatom in 2 eine trigonal bipyramidale Struktur mit apicaler Anordnung der Atome C(1) und C(1') vermutet [15]. Für 1 ist diese Anordnung jedoch wegen der Polaritätsregel [16] von vornherein wenig wahrscheinlich. Die Ursache für die kleinen Kopplungen liegt demnach offensichtlich in einer Verschiebung der s-Elektronendichte in die Zinn-Wolfram-Bindung. ${}^{13}\text{C-Daten}$ vergleichbarer Stannylenkomplexe sind unseres Wissens bisher nicht beschrieben worden, jedoch zeigt die ${}^{2}J({}^{119}\text{Sn}{}^{-1}\text{H})$ -Kopplung in Me₂Sn-Cr(CO)₅ · THF eben-falls einen sehr kleinen Wert [17].

Das ¹¹⁹Sn-NMR-Spektrum von 1 (in CDCl₃, T 30 °C) zeigt ein Singulett bei δ 195.39 ppm mit einer ¹J(¹⁸³W-¹¹⁹Sn)-Kopplung von 892 ± 6 Hz, während für 2 (in CD₂Cl₂, T 28 °C) ein Triplett bei δ -7.49 ppm (J(¹¹⁹Sn-³¹P) 443 ± 6 Hz) mit einer ¹J(¹⁸³W-¹¹⁹Sn)-Kopplung von 894 ± 6 Hz beobachtet wird. Derartige Unterschiede in den ¹¹⁹Sn-NMR-Verschiebungen in Abhängigkeit von Donoratom E wurden bereits an Verbindungen der Typen (CO)₅CrSn(SCH₂CH₂)₂E (E = NBu^t, PPh) [8] und (CO)₅MSnCl₂ · E (M = Cr, W, E = PR₃, THF) [18] gemessen. Die Temperaturabhängigkeit des ³¹P-NMR-Spektrums von 2 (T 25 °C: δ = -12.49 ppm, J(¹¹⁹Sn-³¹P) 444.9 Hz; T -80 °C: δ -14.22 ppm, J(¹¹⁹Sn-³¹P) 489.0 Hz) und die Verbreiterung des N-Methylsignals im ¹³C-NMR-Spektrum von 1 lassen auf dynamische Austauschprozesse schliessen, wie sie bereits für Verbindungen der Art (o-C₆H₄CH₂NMe₂)₂SnBrPh [19], (Me₂NCH₂CH₂CH₂)₂SnCl₂ [20] und (R₂ECH₂CH₂X)₂Sn (X = O, S; E = N, P) [21] beschrieben wurden. Die IR-Spektren in KBr (1, ν (CO) 2048, 1955, 1920; 2, ν (CO) 2055, 1960, 1920, 1900 cm⁻¹) deuten für beide Komplexe auf eine gestörte C_{4v}-Symmetrie hin. Das π -Akzeptorverhalten der Stannylengruppierungen in 1 und 2 ist dem der Stanna(II)bicyclooctane Sn(XCH₂CH₂)₂E vergleichbar [8].

Kristall- und Molekülstruktur

Die Molekülstrukturen von 1 und 2 sind in Fig. 1 und 2 dargestellt, die Packungen in den Elementarzellen in Fig. 3 und 4. Die Elementarzelle von 2 enthält ein Molekül THF pro Komplex, welches jedoch die Geometrie des Komplexes nicht beeinflusst ($d(Sn \cdots O)$ 571.6 pm) und somit nicht in die Diskussion der Molekülstruktur einbezogen wird. Die Bindungslängen und Bindungswinkel sind in den Tab. 2 und 3 zusammengestellt. Obwohl Molekül 1 eine höhere Symmetrie als Molekül 2 besitzt, zeigen beide Strukturen grosse Ähnlichkeit, die sich besonders in den C₂E₂SnW-Gerüsten widerspiegelt. Sowohl die Zinn-Wolfram- als auch die Zinn-Kohlenstoff-Bindungslängen sind nahezu gleich. Letztere sind den in Ph₃SnMn(CO)₅ und (o-C₆H₄CH₂NMe₂)SnPh₂Br gefundenen Werten vergleichbar [22,23], jedoch deutlich kürzer als die Sn-C-Bindungen in t-Bu₂SnCr(CO)₅ · py [24].

In beiden Verbindungen besitzt das Sn-Atom eine (3 + 2)-Koordination, wenn man die sehr unterschiedlichen Bindungsordnungen berücksichtigt. Nach Donnay und Allmann [30] erhält man für die Bindungen Sn-W und Sn-C die Bindungsordnung $n \cong 1.0$. Dagegen ergibt sich für die sehr grossen Abstände Sn-N bzw. Sn-P in 1 bzw. 2 (vgl. Tab. 2) nur $n \cong 0.4-0.5$. Eine (3 + 2)-Koordination dieses Typs wird im allgemeinen mit einer verzerrten trigonalen Bipyramide in Zusam-

Fig. 1. Molekülstruktur von 1.

Fig. 2. Molekülstruktur von 2.

Fig. 3. Stereopaar der Elementarzelle von 1.

Fig. 4. Stereopaar der Elementarzelle von 2.

1		2	
W-Sn	274.9(1)	W-Sn	276.2(1)
W-C(9)	205.2(7)	W-C(39)	204.3(9)
W-C(9')	205.2(7)	W-C(42)	203.6(9)
W-C(10)	202.4(7)	W-C(40)	201.1(8)
W - C(10')	202.5(7)	W-C(43)	202.2(8)
W-C(11)	198.7(8)	W-C(41)	199.0(8)
Sn-N(1)	256.4(4)	Sn - P (1)	301.2(2)
Sn-N(1')	256.4(4)	Sn-P(2)	283.1(2)
Sn-C(8)	216.4(5)	Sn-C(19)	218.2(7)
Sn-C(8')	216.4(5)	Sn-C(28)	218.5(7)
C(9)-O(9)	112.4(10)	C(39)–O(39)	113.4(12)
C(10)-O(10)	113.6(10)	C(40)-O(40)	113.0(11)
C(11)-O(11)	114.5(11)	C(41)–O(41)	113.2(9)
		C(42)-O(42)	122.4(12)
		C(43)-O(43)	114.7(11)
N(1)-C(2)	147.5(7)	P(1)-C(1)	182.5(8)
N(1)-C(12)	148.8(7)	P(1)-C(7)	182.1(7)
N(1)-C(13)	148.0(8)	P(1)-C(13)	183.3(7)
		P(2)-C(20)	180.4(8)
		P(2)-C(26)	181.9(7)
		P(2)-C(32)	184.4(8)
C(2)-C(3)	149.5(8)	C(13)-C(14)	149.2(11)
		C(32)–C(33)	147.3(11)
C(3)-C(8)	139.7(7)	C(14)–C(19)	140.0(10)
		C(33)–C(38)	141.8(10)
C(3)-C(4)	138.8(8)	C(14)-C(15)	138.6(10)
		C(33)–C(34)	138.2(11)
C(4)-C(5)	136.5(9)	C(15)-C(16)	139.5(13)
		C(34)–C(35)	135.8(13)
C(5)-C(6)	139.7(10)	C(16)-C(17)	135.8(13)
		C(35)-C(36)	138.1(13)
C(6)-C(7)	137.3(8)	C(17)-C(18)	137.7(12)
		C(36)-C(37)	138.6(12)
C(7)-C(8)	138.1(7)	C(18)-C(19)	139.2(11)
		C(37)-C(38)	138.1(11)

TABELLE 2 AUSGEWÄHLTE BINDUNGSLÄNGEN (pm) IN 1 UND 2

menhang gebracht. Andererseits verwendet man als Mass für die Verzerrung im wesentlichen die Abweichungen der zentralen Bindungswinkel von den Idealwerten. In diesem Sinne steht die Sn-Koordination beider Verbindungen einer verzerrten tetragonalen Pyramide wesentlich näher, siehe Fig. 5. In Tab. 6 werden die Bindungswinkel an den Sn-Atomen mit denen von idealer trigonaler Bipyramide bzw. denen von tetragonaler Pyramide verglichen. Die mittleren Abweichungen betragen für die trigonale Bipyramide $\pm 17^{\circ}$, für die tetragonale Pyramide aber nur $\pm 9^{\circ}$. In der tetragonalen Pyramide der Stickstoffverbindung liegt das Sn-Atom sowohl innerhalb der W,N,N'- als auch der W,C,C'-Ebene. Für die Phosphorverbindung beträgt die Auslenkung des Sn-Atoms aus der W,C,C,-Ebene 7.7 pm und aus der W,P,P-Ebene 0.6 pm. Eine schematische Darstellung ist in Fig. 5 wiedergegeben.

TABELLE	1
Inductor	-

AUSGEWÄHLTE BINDUNGSWINKEL (°) IN 1 UND 2

1		2	· .
Sn-W-C(9)	88.5(2)	Sn-W-C(39)	90.6(2)
Sn-W-C(9')	88.4(2)	Sn-W-C(42)	87.8(2)
Sn-W-C(10)	86.9(2)	Sn-W-C(40)	89.6(2)
Sn-W-C(10')	86.9(2)	Sn-W-C(43)	89.3(2)
Sn-W-C(11)	180.0(1)	Sn-W-C(41)	177.7(2)
C(9)-W-C(10)	88.7(3)	C(39)-W-C(40)	90.6(4)
C(9)-W-C(11)	91.5(2)	C(39)-W-C(41)	91.7(3)
C(9)-W-C(9')	176.9(4)	C(39)-W-C(42)	178.4(3)
C(9)-W-C(10')	91.1(3)	C(39)-W-C(43)	90.0(4)
C(10)-W-C(10')	173.7(3)	C(40)-W-C(43)	178.8(3)
C(10)-W-C(11)	93.1(2)	C(40)-W-C(42)	89.4(4)
C(11)-W-C(9')	91.6(2)	C(40) - W - C(41)	90.3(3)
C(11)-W-C(10')	93.1(2)	C(41)-W-C(42)	90.0(3)
		C(41)-W-C(43)	90.7(3)
		C(42) - W - C(43)	89.9(4)
W-Sn-N(1)	109.6(1)	W-Sn-P(1)	109.0(1)
W-Sn-N(1')	109.6(1)	W-Sn-P(2)	114.1(1)
WSnC(8)	121.3(1)	W-Sn-C(19)	126.5(2)
W-Sn-C(8')	121.3(1)	W-Sn-C(38)	126.7(2)
C(8)-Sn-C(8')	117.4(2)	C(19)-Sn-C(38)	106.5(3)
N(1)-Sn-C(8)	72.5(2)	P(1)-Sn-C(19)	71.0(2)
N(1)-Sn-C(8')	87.3(2)	P(1)-Sn-C(38)	80.8(2)
N(1')-Sn-C(8)	87.4(2)	P(2)-Sn-C(19)	83.6(2)
N(1')-Sn-C(8')	72.5(2)	P(2)-Sn-C(38)	73.7(2)
N(1)-Sn-N(1')	140.9(2)	P(1)-Sn-P(2)	136.9(1)

Auf die schwachen Bindungen Sn-N bzw. Sn-P ($n \approx 0.4-0.5$) wurde bereits hingewiesen. In diesem Zusammenhang sind einige Vergleiche von Interesse. Der Sn-N-Abstand von 256.4 pm (in 1) ist deutlich länger als die koordinativen Sn-N-Wechselwirkungen in den meisten bekannten Stannylenen [Sn(NMe₂)]₂ (226 pm) [25], (CO)₅CrSnBu₂^t·C₅H₅N (229 pm) [24], (CO)₅CrSn(SCH₂CH₂)₂NBu^t (240 pm) [4], Me₂Si(NBu^t)₂Sn · NH₂Bu^t (246 pm) [1] und [C₅Me₅Sn ·

Fig. 5. Schematische Darstellung der Konfiguration des Zinnatoms in 1.

364

 $C_{10}H_8N_2$]⁺[CF₃SO₃]⁻ (247.6, 249.5 pm) [26], jedoch kürzer als die in [C₅Me₅Sn · C₅H₅N]⁺[CF₃SO₃]⁻ (261.9 pm) [26] und [Sn(SCH₂CH₂)₂NBu¹]₂ (271, 279, 299 pm) [6] gefundenen Werte. Ein Vergleich mit (o-C₆H₄CH₂NMe₂)SnPh₂Br (Sn-N 251.1 pm) [23] verdeutlicht, dass das Wolframpentacarbonylfragment nur einen geringen Einfluss auf die Lewisacidität des Zinnatoms in 1 ausübt. Für die Sn-P-Abstände steht wenig Vergleichsmaterial zur Verfügung. Beide Sn-P-Abstände sind grösser als die in den bisher vermessenen Sn^{II}-Verbindungen Sn(SCH₂CH₂)₂PPh (261 pm) [7], (CO)₅CrSn(SCH₂)₂PPh · C₅H₅N (275.6 pm) [27] und Sn[(PMe₂)-CPMe₂]₂ (259.8, 260.2, 279.0, 283.9 pm) [28]. Der Sn-P(1)-Abstand ist mit der in der Sn^{IV}-Verbindung Me₂ClSn(CH₂)₃PPhBu^t (307.8 pm) [29] gefundenen Zinn-Phosphor-Wechselwirkung vergleichbar.

Interessant sind die unterschiedlichen Sn-P-Abstände von 283.1 und 301.2 pm in 2. Sie sind neben der Verbreiterung von ¹³C-NMR-Signalen als weiterer Hinweis für den in Lösung ablaufenden Dissoziationsprozess (Schema 2) zu werten. Die vorliegende Struktur repräsentiert dabei eine Realgeometrie entlang der Reaktionskoordinate $A \Leftrightarrow B \Leftrightarrow A'$.

Van Koten et al. [23] haben die Struktur von C, N-{2-[(Dimethylamino)methyl]phenyl}-diphenylzinnbromid untersucht. In dieser Verbindung liegt

Massenza	ahl <i>m / z</i>	Fragment		Intensitä	t (%)	
1	2	1	2	1	2	
<u></u>	15		CH ₃] ⁺		30	
28	28	CO] ⁺	COJ	100	100	
77	77	Ph] ⁺	Ph] ⁺	96	8	
91	91	C ₇ H ₇] ⁺	C ₇ H ₇] ⁺	91	100	
108		PPh] ⁺	, ,=	30		
124		P₄] ⁺		20		
134		$C_6H_4CH_2NMe_2]^+$		100		
183				11		
185 275		PPh_2^+		4		

TABELLE 4

MASSENSPEKTROSKOPI	SCHE DATEN	VON 1	UND 2

tatsächlich eine verzerrte trigonale Bipyramide vor, für die die mittlere Abweichung der Bindungswinkel ebenfalls $\pm 9^{\circ}$ beträgt, ψ -koordinierte Zinnkomplexe können kaum zu Vergleichen herangezogen werden, da wegen des Fehlens einer beobachtbaren Polyederecke zuverlässige Aussagen schwerfallen.

Massenspektren

Die massenspektroskopischen Daten sind in Tab. 4 zusammengestellt. Während 2 rückstandsfrei verdampft, ist bei 1 ein schwarzer Rückstand zu beobachten.

Eine TG-Analyse von 1 zeigt, dass als erster Schritt der Fragmentierung bei etwa 90 °C alle fünf Carbonylgruppen abgespalten werden. Charakteristisch für Benzylverbindungen im Massenspektrum ist das Auftreten des Tropyliumkations $C_7H_7^+$. Üblicherweise zeigen derartige Verbindungen auch keine Molpeaks oder nur solche mit sehr geringer Intensität. Zinn- oder wolframhaltige Bruchstücke treten überraschend nicht auf.

Experimentelles

Alle Reaktionen wurden unter Argonatmosphäre unter Verwendung frisch destillierter Lösungsmittel ausgeführt. Die NMR-Spektren wurden mit einem Spektrometer WP 200 der Firma Bruker aufgenommen. ¹³C bei 50.39, ³¹P bei 81.026 und ¹¹⁹Sn bei 74.64 MHz. Für die Aufnahme der IR-Spektren stand ein Zeiss Specord M 80 zur Verfügung, die Massenspektren wurden durch ein QMG 511 der Firma Balzers erstellt.

Darstellung von 1

2 g (5.68 mmol) Wolframhexacarbonyl werden in 200 ml THF gelöst und etwa 6 h mit einer Hg-Hochdrucktauchlampe bestrahlt. Anschliessend werden unter magnetischem Rühren 1.1 g (5.68 mmol) wasserfreies Zinn(II)chlorid zugegeben. Es wird 30 min gerührt und anschliessend bei -70 °C mit 11.4 mmol o-LiC₆H₄CH₂NMe₂ versetzt. Das Lösungsmittel wird auf dem Wasserbad entfernt und der Rückstand zur Entfernung von nicht umgesetztem Wolframhexacarbonyl bei 60 °C und 0.1 mmHg getrocknet. Anschliessend wird mit heissem Benzol extrahiert, man erhält 2.46 g 1 (61% d. Th.) in Form farbloser Kristalle vom Fp. 225–230 °C (Zers.), Gef.: C, 38.20; H, 3.15; N, 3.79.C₂₃H₂₄N₂O₅SnW ber.: C, 38.83; H, 3.38; N, 3.94%.

Darstellung von 2

Analog 1 werden aus 2 g (5.68 mmol) $W(CO)_6$, 1.1 g (5.68 mmol) $SnCl_2$ und 11.4 mmol *o*-LiC₆H₄CH₂PPh₂ (als Etherat) 2.54 g 2 (45% d.Th.) in Form farbloser Kristalle vom Fp. 236–238°C (Zers.) erhalten. Gef.: C, 51.56; H, 3.09. C₄₃H₃₂O₅P₂SnW ber.: C, 51.98; H, 3.22%.

Kristallstrukturbestimmung

Einkristalle von 1 wurden aus Chloroform, von 2 aus einem Benzol/THF-Gemisch erhalten. Für 2 enthielt die Elementarzelle pro Formeleinheit ein Molekül THF. Experimentelle Einzelheiten der Strukturbestimmung sind in Tab. 5 zusammengestellt.

Die Verbindungen lagen in gelben transparenten Kristallen vor, deren Zellparameter auf der Basis von 15 Reflexen auf einem Syntex-P3-Vierkreisdiffraktometer

Summenformel; Molmasse (amu)	C ₂₃ H ₂₄ N ₂ O ₅ SnW; 710,993	C47H40P2O6SnW; 1064.211
Kristallgrösse (mm)	$0.4 \times 0.4 \times 0.1$	0.4×0.4×0.4
Gitterkonstanten		
a (pm)	1310.2(4)	2108.1(4)
b (pm)	1552.1(5)	1707.7(4)
c (pm)	1202.9(49	1283.7(3)
β(°)	90.11(2)	97.47(2)
MV (cm ³ /mol); $d_{\rm her}$ (g/cm ³)	368.3; 1.930	690.0; 1.439
Raumgruppe (Nr.); Z	C2/c (15); 4	$P2_1/n$ (14); 4
Strahlung	$Mo-K_a$; Gra	phitmonochromator
μ (cm ⁻¹); F(000)	60.25; 1360	33.03; 1936
Messbereich (2θ) ; Scan	3.5-55.0)°; ω
Messgeschwindigkeit	0.5 - 29.	3
$N(hkl): N(F > 3\sigma(F))$	2820; 2730	6758; 6729
R(aniso) (H-atome isotrop)	0.029	0.039

KRISTALLOGRAPHISCHE DATEN VON 1 UND 2

TABELLE 5

bestimmt wurden. Die Reflexintensitäten wurden nach dem ω -Verfahren (Molybdänstrahlung, Graphitmonochromator) mit einem Scanbereich von 1° und einer Scangeschwindigkeit zwischen 0.5 und 29.3° min⁻¹ in Abhängigkeit von der Höhe der Reflexintensität gemessen. Bei $2\theta(\max) = 55°$ wurde die angegebene Anzahl beobachteter Reflexe *hkl* ($F > 3\sigma(F)$) erhalten, die zur Strukturbestimmung verwendet wurden. Die Auswertung erfolgte auf einer Rechenanlage Eclipse S/250. Die Strukturen wurden mit Patterson-Methoden gelöst. Die Verfeinerungen der Parameter wurden mit der Methode der kleinsten Quadrate vorgenommen und führten bei anisotroper Beschreibung zu den angegebenen *R*-Werten. Die Lagen der Wasserstoffatome wurden geometrisch berechnet und mit isotroper Beschreibung bei den Verfeinerungen berücksichtigt.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen 2,

PYRAMIDE (TE	2P) (in ~) (Die Bezei	chnung der Atome	entsprechen Schema	. 2)	
Winkel	TRBP	1	2	TEP	
W-Sn-E	90	109.6	109.0	117.3	
W-Sn-E'	90	109.6	114.1	117.3	
W-Sn-1	120	121.3	126.5	117.3	
W-Sn-1'	120	121.3	126.7	117.3	
E-Sn-E'	180	140.9	136.9	125.4	
E-Sn-1	90	72.5	71.0	77.9	
E-Sn-1'	90	87.3	80.8	77.9	
E'-Sn-1	90	87.4	83.6	77.9	
E'-Sn-1'	90	72.5	73.7	77.9	
1-Sn-1'	120	117.4	106.5	125.4	

TABELLE 6

VERGLEICH DER WINKEL AUS DEN KOORDINATIONSSPHÄREN DES ZINNS IN 1 UND 2 MIT DENJENIGEN DER TRIGONALEN BIPYRAMIDE (TRBP) UND EINER TETRAGONALEN

unter Angabe der Hinterlegungsnummer CSD-52122, der Autoren und des Zeitschriftenzitats angefordert werden.

Literatur

- 1 M. Veith und O. Recktenwald, Top. Curr. Chem., 104 (1982) 1.
- 2 P.B. Hitchcock, M.F. Lappert, B.J. Samways und E.L. Weinberg, J. Chem. Soc., Chem. Commun., (1983) 1492.
- 3 G.W. Grunkewich, B.Y.K. Ho, T.J. Marks, D.L. Tomaja und J.J. Zuckerman, Inorg. Chem., 12 (1973) 2522.
- 4 A. Tzschach, K. Jurkschat, M. Scheer, J. Meunier-Piret und M. van Meerssche, J. Organomet. Chem., 259 (1983) 165.
- 5 M. Veith, H. Lange, K. Bräuer und R. Bachmann, J. Organomet. Chem., 216 (1981) 377.
- 6 K. Jurkschat, M. Scheer, A. Tzschach, J. Meunier-Piret und M. van Meerssche, J. Organomet. Chem., 281 (1985) 173.
- 7 U. Baumeister, H. Hartung, K. Jurkschat und A. Tzschach, J. Organomet. Chem., 304 (1986) 107.
- 8 A. Zschunke, E. Völtzke, M. Scheer, K. Jurkschat und A. Tzschach, J. Organomet. Chem., 308 (1986) 325.
- 9 A. Lyčka, J. Holeček, M. Nádvorník und K. Handlíř, J. Organomet. Chem., 280 (1985) 323, dort weitere Literaturzitate.
- A. Lyčka, M. Nádvorník, K. Handlíř und J. Holeček, Collection Czech. Chem. Commun., 49 (1984) 2903.
- 11 B. Mathiasch, Org. Magn. Res., 17 (1981) 296.
- 12 M. Gielen und K. Jurkschat, J. Organomet. Chem., 273 (1984) 303.
- 13 M. Gielen, K. Jurkschat, J. Meunier-Piret und M. van Meerssche, Bull. Soc. Chim. Belg., 93 (1984) 379.
- 14 H.-P. Abicht und K. Issleib, J. Organomet. Chem., 289 (1985) 201.
- 15 K. Jurkschat, H.-P. Abicht, A. Tzschach und B. Mathieu, J. Organomet. Chem., 309 (1986) C47.
- 16 P. Gillespie, P. Hoffmann, H. Klusacek, D. Marquarding, S. Pfohl, F. Ramirez, E.A. Tsolis und I. Ugi, Angew. Chem., 83 (1971) 691.
- 17 T.J. Marks, J. Am. Chem. Soc., 93 (1971) 7090.
- 18 W.-W. du Mont und H.-J. Kroth, Z. Naturforsch. B, 35 (1980) 700.
- 19 G. van Koten, J.T.B.H. Jastrzebski und J.G. Noltes, J. Organomet. Chem., 177 (1979) 283.
- 20 K. Jurkschat, J. Kalbitz, M. Dargatz, E. Kleinpeter und A. Tzschach, Publikation in Vorbereitung.
- 21 M. Dargatz, K. Jurkschat, E. Kleinpeter und A. Tzschach, Publikation in Vorbereitung.
- 22 H.P. Weber und R.F. Bryan, Acta Crystallogr., 22 (1967) 822.
- 23 G. van Koten, J.G. Noltes und A.L. Spek, J. Organomet. Chem., 118 (1976) 183.
- 24 M.D. Brice und F.A. Cotton, J. Am. Chem. Soc., 95 (1973) 4529.
- 25 M.M. Olmstead und P.P. Power, Inorg. Chem., 23 (1984) 413.
- 26 F.X. Kohl, E. Schlüter, P. Jutzi, C. Krüger, G. Wolmershäuser, P. Hoffmann und P. Stauffert, Chem. Ber., 117 (1984) 1178.
- 27 J. Meunier-Piret, M. van Meerssche, K. Jurkschat und A. Tzschach, Publikation in Vorbereitung.
- 28 H.H. Karsch, A. Appelt und G. Müller, Angew. Chem., 97 (1985) 404.
- 29 H. Weichmann, J. Meunier-Piret und M. van Meerssche, J. Organomet. Chem., 309 (1986) 267.
- 30 R. Allmann, Monatsh. Chem., 106 (1975) 779.